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ABSTRACT LiDAR (Light Detection And Ranging) is an emerging remote-sensing tool that can provide
fine-scale data describing vertical complexity of vegetation relevant to species that are responsive to forest
structure. We used LiDAR data to estimate occupancy probability for the federally threatened marbled
murrelet (Brachyramphus marmoratus) in the Oregon Coast Range of the United States. Our goal was to
address the need identified in the Recovery Plan for a more accurate estimate of the availability of nesting
habitat by developing occupancy maps based on refined measures of nest-strand structure. We used murrelet
occupancy data collected by the Bureau of Land Management Coos Bay District, and canopy metrics
calculated from discrete return airborne LiDAR data, to fit a logistic regression model predicting the
probability of occupancy. Our final model for stand-level occupancy included distance to coast, and 5
LiDAR-derived variables describing canopy structure. With an area under the curve value (AUC) of 0.74,
this model had acceptable discrimination and fair agreement (Cohen’s k¼ 0.24), especially considering that
all sites in our sample were regarded by managers as potential habitat. The LiDAR model provided better
discrimination between occupied and unoccupied sites than did a model using variables derived from
Gradient Nearest Neighbor maps that were previously reported as important predictors of murrelet
occupancy (AUC¼ 0.64, k¼ 0.12). We also evaluated LiDARmetrics at 11 known murrelet nest sites. Two
LiDAR-derived variables accurately discriminated nest sites from random sites (average AUC¼ 0.91).
LiDAR provided a means of quantifying 3-dimensional canopy structure with variables that are ecologically
relevant to murrelet nesting habitat, and have not been as accurately quantified by other mensuration
methods. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
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Habitat models are useful tools in conservation biology when
they can be used to accurately predict species distributions
over large areas and to identify priority areas for conservation
and restoration (Guisan and Zimmermann 2000). Develop-
ment of accurate, reliable models for species that use
old-growth forest canopies can be challenging because of
the difficulties of discerning and measuring the relevant
features at an appropriate spatial scale in complexly
structured, 3-dimensional space. Until recently, acquiring
data that characterize vertical structure at a sub-meter scale of
resolution to inform habitat models for landscape scale
applications has not been feasible. However, recent studies
(e.g., Goetz et al. 2007, 2010; Smart et al. 2012; Zhao
et al. 2012) have overcome these challenges with successful
applications of LiDAR (Light Detection And Ranging)

technology in wildlife–habitat models. Because it directly
measures both vertical and horizontal vegetation distribution
(Lefsky et al. 1999; Hyde et al. 2006), LiDAR is capable of
providing information on 3-dimensional habitat structure
that influences patterns of biodiversity in general (Bergen
et al. 2009), and is particularly relevant for species that
respond directly to canopy structure (Vierling et al. 2008,
Jung et al. 2012, Palminteri et al. 2012).
The marbled murrelet (hereafter, murrelet; Brachyramphus

marmoratus) is a federally threatened seabird that, in
Washington, Oregon, and California (USA), nests primarily
in the canopy of old-growth and mature forest (Hamer and
Nelson 1995, Ralph et al. 1995, Nelson 1997). The
conservation of nesting habitat is a critical component of
the murrelet recovery plan (USFWS 1997). In particular, the
recovery plan identifies the need for refined measures of nest
site structure and selection by murrelets, to more accurately
estimate the availability of nesting habitat (Recovery Task
4.4.1.2). Raphael et al. (2011) modeled habitat suitability for
the murrelet in Washington, Oregon, and California using
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presence only data (Maxent; Phillips et al. 2006, Phillips and
Dudı́k 2008). The models they developed used vegetation
covariates derived from integrated field plot data and satellite
imagery with Gradient Nearest Neighbor imputation
methods (Ohmann and Gregory 2002). Although the
performance of the models developed by Raphael et al.
(2011) was strong for each of the 3 U.S. states (OR,WA, and
CA) modeled (area under the curve [AUC]> 0.85),
Gradient Nearest Neighbor–derived data do not perform
as well at smaller spatial scales, such as stands and patches
(Pierce et al. 2009). Furthermore, variables that discriminate
suitable and unsuitable habitat at a local scale are likely to
be different from those that perform well at a regional scale
(Gaillard et al. 2010). Development of tools to identify
habitat at finer spatial scales would assist with district-level
planning and management.
Models developed for use at smaller spatial scales have

established that variables describing the availability of nesting
platforms and vertical canopy complexity are important
correlates of suitable nesting habitat for murrelets (Hamer
and Nelson 1995, Nelson and Wilson 2002, Hamer
et al. 2008, Raphael et al. 2011). However, the nuances of
canopy structure that provide suitable nesting platforms are
difficult to quantify. Historically, murrelet nesting habitat has
been characterized as multistoried or multilayered (Hamer
and Nelson 1995, USFWS 1997), but a method for direct
quantification of this characteristic has not been developed.
Rather, a discrete, categorical variable, the number of tree-
canopy layers present, has been derived from Gradient
Nearest Neighbor data (Raphael et al. 2011) or estimated in
the field by observers on the ground (e.g., Hamer et al. 2008).
Although this categorical variable has been useful in
classification of habitat suitability for murrelets, continuous,
directly measured variables provide a more accurate descrip-
tion of vertical structure and would likely result in superior
discriminatory power (Graf et al. 2009). LiDAR offers the
potential to provide metrics that directly characterize canopy
complexity at a finer spatial resolution than Gradient Nearest
Neighbor–derived data, based on empirical rather than
imputed data, and without the subjectivity and observer bias
inherent in field data. Furthermore, a habitat model based on
LiDAR-derived variables would directly address the need for
an accurate and repeatable methodology for inventory and
monitoring of habitat identified in the recovery plan
(USFWS 1997:147). The increasing availability of LiDAR
coverage combined with capability of LiDAR to quantify
fine-scale, 3-dimensional canopy complexity over broad
geographic areas provides a promising application for
characterizing murrelet nesting habitat (Lefsky et al.
2002). Although LiDAR coverage is not currently complete
across the tree-nesting range of the murrelet, data are
available for many areas; LiDAR data have been acquired for
54% and 46% of the area within 80 km of the coast for
Oregon and Washington, respectively, and both states are
actively acquiring additional coverage (P. Haggerty, U.S.
Geological Survey, unpublished data).
Our goal in this study was to explore the utility of LiDAR-

derived variables to accurately identify and map suitable

nesting habitat for the murrelet at a stand-level spatial scale.
Our specific objectives were to 1) identify LiDAR-derived
variables that were most strongly associated with stand-level
occupancy and nest trees; 2) assess the usefulness of LiDAR
in refining understanding of murrelet–habitat relationships
by comparing a model incorporating LiDAR-derived
variables to a model using Gradient Nearest Neighbor–
derived variables; and 3) develop a predictive map of
probability of murrelet occupancy based on LiDAR-derived
data for the Bureau of Land Management Coos Bay District
(hereafter, Coos Bay BLM). Ultimately, we wanted to
provide managers with a tool to address recovery goals for
this threatened species at the District level, where manage-
ment actions are implemented.

STUDY AREA

The 1,692 km2 study area was located in the Coast Range
physiographic province of southwestern Oregon and
included the forested lands of Coos Bay BLM and the
Elliott State Forest, managed by the Oregon Department of
Forestry (Fig. 1). The Coos Bay BLM was managed under
the Northwest Forest Plan (USDA/USDI 1994), which led
to the establishment of extensive late-successional forest
reserves across the study area and other strategies to protect
habitat for native forest-associated species. The region was
dominated by Pseudotsuga menziesii–mixed conifer forest
and stands of Pseudotsuga menziesii–Tsuga heterophylla
(Kiilsgaard 1999). Much of the Coos Bay BLM land
occurred in 258-ha (1-mi2) sections interspersed among
privately owned lands, and consequently included highly
fragmented late-successional forests.

METHODS

Murrelet Data
Site-level survey data.—The murrelet data used to develop

the habitat model were derived from a BLM database of
murrelet survey records collected between 1993 and 2010 on
Coos Bay BLM lands. Because of the threatened status of the
murrelet (USFWS 1992), the BLM has regularly conducted
intensive murrelet surveys since the early 1990s. Surveys were
conducted according to protocols established by the Pacific
Seabird Group (Evans Mack et al. 2003). Survey sites were
not randomly selected because the Pacific Seabird Group
protocols require that all potential habitat be surveyed prior
to tree harvesting or other forest management projects that
are likely to affect murrelets. Thus, all the sites used in our
analysis were considered potential murrelet habitat that also
were suitable for timber harvest. Potential habitat is defined
as 1) old-growth (>200 yr old), 2) mature (>80 yr old), or 3)
younger coniferous forest with remnant trees or nesting
platforms. A nesting platform is a flat surface in a tree crown
formed by a large-diameter branch or a tree deformity
(>10 cm in diam, >10m above forest floor; Evans Mack
et al. 2003). Project areas containing extensive potential
habitat were divided into survey sites <61 ha in area. Each
survey site included multiple stations at which surveys were
conducted. To maximize the probability of detecting
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murrelets, stations were placed in openings, along roads, and
often up to 50m outside the survey site if an adjacent location
afforded a better position for observations.
We did not use model-based estimation procedures to

determine the occupancy status of stands (e.g., MacKenzie
et al. 2006). Instead, we classified occupancy status according
to categories of observed murrelet behaviors that have been
standardized by the Pacific Seabird Group. This approach
permitted maps and other products of our analysis to be
consistent with the murrelet occupancy classification used
by the BLM, and thus fulfill a commitment that our study
yield useful habitat assessment tools for the agency.
Murrelet surveys are designed to collect data for classifying
survey sites as 1) “occupied” by murrelets, with 2) murrelet
“presence,” or 3) “probable absence” (Evans Mack et al.
2003). An “occupied” site is defined as a site where sub-
canopy behaviors or signs of nesting were observed during at
least one visit to any of the stations within the site. “Presence”
is defined as the detection of above-canopy flight or non-
stationary aural detections at a site. “Probable absence” is

defined as a site with potential habitat where no murrelets
were detected after the requisite numbers of surveys. Pacific
Seabird Group protocols require that survey sites are visited a
minimum of 5 times over a 2-year period; more visits are
required when murrelets are detected but occupancy
behaviors were not observed (Evans Mack et al. 2003).
Although we did not explicitly incorporate estimates of
detectability in classifying occupancy status of survey sites,
surveys conducted according to Pacific Seabird Group
protocols should result in a >95% correct classification of
sites as “occupied,” “presence,” or “probable absence” (Evans
Mack et al. 2003:14).
We excluded sites classified as “presence” by the BLM

because evidence of nesting was insufficient, and we used
the survey station records to identify forest stands as
“occupied” or “probable absence” according to the following
procedure. We delineated 6,522 forest stands on the Coos
Bay BLM District based on homogeneity of composition
and structure using a BLM GIS (geographic information
system) layer of forest inventory. We dissolved boundaries
that represent public land survey system section lines, not
actual differences in forest vegetation. Because of the
ambiguity surrounding the precise locations of murrelet
nest trees, the Pacific Seabird Group protocol recommends
that the entire survey site be classified as occupied even if
sub-canopy behaviors were observed at only one station at
the site (Evans Mack et al. 2003). We adopted this practice
for our stand-level analysis. Because of the long temporal
gap between some murrelet surveys and the LiDAR flight,
we used a GIS and 2009 satellite imagery to visually inspect
every site classified as “occupied” or “probable absence” for
evidence of tree harvest since murrelet surveys that would
have confounded our analysis. Based on this inspection, we
excluded a small number of sites where murrelets were
undetected during surveys and the stand had been
subsequently harvested before the LiDAR flight. Our
classification procedure resulted in 121 forest stands
identified as “occupied” and 302 surveyed stands as
“probable absence” (henceforth referred to as occupied
and unoccupied stands, respectively).
To validate the stand-level habitat model with an

independent set of murrelet observations, we acquired
murrelet survey records collected between 1992 and 2012
on the Elliott State Forest. These records were the result of
surveys conducted at 2,870 stations according to the same
Pacific Seabird Group protocols as were used on BLM lands.
We used the samemethods to classify the occupancy status of
Elliott State Forest stands as previously described for the
BLM stand-level analysis. The resulting list contained 130
stands classified as occupied and 510 classified as unoccupied.
Nest tree data.—We also had access to locations for 11 trees

in the Elliott State Forest known to be used by murrelets for
nesting. These tree records were from a study of murrelet
nest sites conducted on Oregon state forest lands between
1995 and 1999 (Nelson and Wilson 2002). Nests were
discovered by climbing trees on plots randomly located
within stands where previous surveys had revealed sub-
canopy murrelet activity.

Figure 1. Location of marbled murrelet surveys (1993–2010) and LiDAR
data collection (2008) in the Coast Range of southwestern Oregon, USA,
including the Coos Bay District of the Bureau of LandManagement (BLM)
and the Elliott State Forest, managed by the Oregon Department of
Forestry.
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LiDAR Data and Other Explanatory Variables
LiDAR data were collected between 3 May and 28
September 2008, using a Leica ALS50 Phase II sensor
flown in a Cessna Caravan 208B (Cessna, Wichita, KS).
Average pulse density was 8.1/m2 and up to 4 returns/pulse
were recorded. Vertical root mean square error was 0.05m.
Raw LiDAR point files (LAS format) were processed by the
US Forest Service, Pacific Northwest Research Station,
using the FUSION software package Gridmetrics routine
(McGaughey 2009) to produce a set of metrics describing
forest cover, forest height, and topographic characteristics for
the entire project area (approx. 652,000 ha) at a pixel size of
22.9m. The FUSION routine used a height cutoff of 1m for
removing LiDAR returns near the ground, and a canopy
threshold of 2m. The upper limit for outliers also was
adjusted to provide for trees of height >91m. The ground
surface was subtracted from the highest hits layer to produce
a canopy surface raster at the 0.9-m pixel size. Canopy
Surface Ratio (a measure of canopy surface area divided by
underlying planimetric area) was calculated with the Digital
Elevation Model (DEM) surface toolbar for ArcGIS 10
(Jenness 2004). We used Canopy Surface Ratio to represent
canopy surface ruggedness.
To evaluate the performance of LiDAR-derived variables

against those from other remote-sensing methods, we
derived from Gradient Nearest Neighbor data for the
Coos Bay BLM District the same set of variables used by
Raphael et al. (2011) to model murrelet habitat suitability for
the Oregon Coast (Table 1). Raphael et al. (2011) used 9
vegetation and physiographic attributes correlated with
murrelet occupancy derived from the 2006 Gradient Nearest
Neighbor imputation model created for the Northwest
Forest Plan effectiveness monitoring (Moeur et al. 2011),
and LandTrendr data (Kennedy et al. 2010).
For each stand polygon, we calculated summary statistics

(min., mean, max., SD) for each FUSION raster, Canopy

Surface Ratio, and the Gradient Nearest Neighbor variables.
We calculated distance to the Pacific Ocean from stand
center using the arcs coded as “coastline” in the National
Hydrography Dataset.

Statistical Analysis
Stand-level analysis.—Because the probability of correct

classification of sites as occupied or unoccupied following
Pacific Seabird Group protocols is considered to be high
enough (>95% according to Evans Mack et al. 2003),
occupancy was treated as a binary response variable and
logistic regression models were fit to predict the probability
of occupancy p(x) for a stand given values of explanatory
variables x, such as stand size, distance to coast, and variables
derived from LiDAR metrics:

p xð Þ ¼ exp g xð Þ� �

1þ exp g xð Þ� � ð1Þ

where g(x)¼ b0þ b1,x1þ…þ bpxp is the logit of the
multiple-regression model with p explanatory variables x
and corresponding coefficients b.
The “Gridmetrics” command in FUSION produces

>60metrics that can be used to describe forest structure
with LiDAR elevation and intensity data, so it was necessary
to go through a process of selecting relevant variables to
reduce the set of candidate explanatory variables. We fit a
univariable logistic regression model for each variable, and
retained only those variables that were significant at least at
the 0.05-level for stepwise model selection. Stepwise
regression using the step() function in R (R Development
Core Team 2011) was performed using a combination of
forward and backward selection. The variables in the final
model were examined for collinearity using variance inflation
factors. If the variance inflation factors values indicated
collinearity among the explanatory variables (variance
inflation factors >4), the variables that explained most

Table 1. Variables used in a model developed by Raphael et al. (2011) to quantify potential habitat for marbled murrelets in Oregon, USA. Raphael et al.
(2011) derived these variables from the 2006 Gradient Nearest Neighbor imputation model created for the Northwest Forest Plan effectiveness monitoring
(Moeur et al. 2011), and LandTrendr data (Kennedy et al. 2010). We compared the performance of these variables in a scaled-down model of murrelet
habitat in the Coos Bay Bureau of Land Management District, southwestern Oregon, with an alternative model using variables derived from LiDAR data
collected between 3 May and 28 September 2008. “GNN” refers to the Gradient Nearest Neighbor model of landscape attributes for the Pacific Northwest
(Ohmann and Gregory 2002).

Variable name Description Unit Source

CANCOV_CON Percent canopy cover of all conifers Percentage GNN
CANCOV_HDW Percent canopy cover of all hardwoods Percentage GNN
MNDBHBA_CON Basal-area weighted mean diam of all live conifers Inches GNN
PLATFORMS Platforms per acre derived from GNN. See Raphael et al.

(2011).
No. per acre Derived from GNN

MULTISTORY_50 Percentage of 50-ha circular area classified as GNN
IMAP_LAYERS (no. of tree-canopy layers present) equal 3.
See Raphael et al. (2011).

Percentage Derived from GNN

PCTMATURE_50 Percentage of 50-ha circular area classified as GNN
VEGCLASS 10 (large conifer, moderate to closed canopy) or
11 (giant conifer, moderate to closed canopy). See Raphael
et al. (2011).

Percentage Derived from GNN

SLOPE_PCT Slope Percentage USGS NED 30-m DEM
BRIGHTNESS Tasseled cap transformation of Landsat TM differentiating

dry from wet soils
Index LandTrendr

GREENNESS Tasseled cap transformation of Landsat TM measuring
presence and density of green vegetation

Index LandTrendr
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variability were retained in the model, while correlated
variables were dropped. Variables that had not been included
in the stepwise regression model were added one at a time to
see if they were significant in combination with the other
variables. We checked for significant interactions among the
variables in the final model.
To compare the explanatory power of LiDAR-derived

variables against other remote-sensing data, we fit a logistic
regression model using variables derived from Gradient
Nearest Neighbor and LandTrendr that were found to be the
most important predictors of murrelet occupancy in Oregon
by Raphael et al. (2011; Table 1). The original model in
which these variables were used was developed to quantify
potential habitat for marbled murrelets at the regional spatial
scale of western Oregon (Raphael et al. 2011). Our goal was
to test the performance of the same variables in a scaled-
down model of murrelet habitat in the Coos Bay BLM
District, for comparison with an alternative model using
LiDAR-derived variables. However, when all variables
identified by Raphael et al. (2011) as significant regional
correlates of murrelet habitat were employed in our logistic
regression model, collinearity issues arose. Although the
Maxent model used by Raphael et al. (2011) was “more stable
in the face of correlated variables […] so there is less need to
remove correlated variables” (Elith et al. 2011:50), logistic
regression models are sensitive to collinearities among
explanatory variables (Hosmer and Lemeshow 2000:140).
Some of the Gradient Nearest Neighbor variables were
inherently correlated with each other; for example, the
inverse relationship between percent canopy cover of conifers
and percent canopy cover of hardwoods. Dependencies
among LandTrendr, Gradient Nearest Neighbor, and
Gradient Nearest Neighbor–derived variables also were
expected because LandTrendr variables were used to derive
the Gradient Nearest Neighbor variables, which were then
used in the development of the Gradient Nearest Neighbor–
derived variables. Therefore, we fit a reduced Gradient
Nearest Neighbor model by dropping insignificant and
collinear variables from the full model one by one and
retaining only the significant variables. We used this model,
henceforth referred to as the Gradient Nearest Neighbor
model, for comparisons with the LiDAR model.
We assessed model performance in several ways. First,

we calculated the AUC statistic (Hosmer and Lemeshow
2000:160). Following the interpretation of AUC values by
Hosmer and Lemeshow (2000:162), AUC� 0.5 suggests no
ability of the model to discriminate between occupied and
unoccupied stands. Area-under-curve values between 0.7 and
0.8 are considered to provide acceptable discrimination,
while 0.8�AUC< 0.9 and AUC� 0.9 provide excellent
and outstanding discrimination, respectively.
Second, we used leave-one-out cross-validation to evaluate

prediction accuracy. We fitted the final model for n� 1
stands at a time and predicted the occupancy probability p(x)
for the stand that was omitted in the model fit. A stand was
classified as occupied for p(x)� 0.286, a threshold value that
reflected differential class sizes in the modeling data set
(Chen et al. 2006, 121/423¼ 0.286). We calculated the

overall accuracy, sensitivity, specificity, and Cohen’s k as
indicators of model performance. Overall accuracy is the
proportion of correctly predicted stands. Sensitivity is the
proportion of observed occupied stands that were predicted
to be occupied. Specificity is the proportion of observed
unoccupied stands that were predicted to be unoccupied.
Cohen’s k is another measure of agreement between observed
and predicted occupancy, which reaches a maximum of 1
when agreement is perfect. Following the interpretation of
Cohen’s k in Altman (1991:404), k� 0.2 shows poor
agreement and k-values between 0.21 and 0.4 show fair
agreement; 0.41� k< 0.6, 0.61� k< 0.8, and k� 0.8 stand
for moderate, good, and very good agreement, respectively.
Third, we provided a visual representation of stand
classification by plotting histograms of the predicted
occupancy probabilities.
Finally, we used 640 stands from the Elliott State Forest

that were surveyed for murrelets (130 occupied, 510
unoccupied) as an independent validation data set. Occu-
pancy was predicted with the LiDAR and Gradient Nearest
Neighbor models to assess the ability of the LiDARmodel to
discriminate between occupied and unoccupied sites of an
independent data set, and to compare performance of the
2 models. A stand was classified as occupied forp(x)� 0.203,
a threshold value that reflected differential class sizes in the
Elliott State Forest data set (Chen et al. 2006; 130/
640¼ 0.203).
Analysis of nest tree data.—We employed a use–availability

design (see Keating and Cherry 2004) to compare canopy
characteristics at the 11 nest trees with those at a random
sample of points from the 7 stands that had nest trees. We
used a 3� 3 grouping of 22.9-m pixels to summarize
LiDAR-derived variables at each sample point, a spatial
scale assumed to approximate a nest grove (i.e., included the
nest tree and immediately neighboring trees). We sampled
approximately one point (either nest tree or random) for
every 15 acres (6 ha) in each stand. We used 500 iterations of
random point selection, and analyses were performed on the
500 resulting data sets.
We started the variable selection process with a univariable

analysis of each variable; variables that were significant at the
0.05-level were retained for step-wise model selection. Only
the most significant of the 4 summary statistics (min., max.,
mean, SD) of each LiDAR variable was retained if more than
one was significant at the 0.05-level. A combination of
forward and backward selection was performed using step()
in R (R Development Core Team 2011). The variables that
were selected in the majority of the 500 data sets were
retained for further modeling.
We assumed that the data from our use–availability design

were approximately equivalent to a case-control design
(Keating and Cherry 2004), and therefore analyzed the data
with logistic regression and interpreted the results in terms of
odds ratios. We used the same variable selection process as
for the stand occupancy analysis, above. The variance of a
random stand effect, included to account for similarities of
points within stands, was so small (<0.00001) as to be
negligible. Therefore, we assumed all stands had a similar

Hagar et al. � Modeling Marbled Murrelet Habitat With LiDAR 241



logistic curve. We used PROC GLIMMIX in SAS (SAS
Institute, Inc. 2012) to determine odds ratios and their
corresponding confidence intervals.

RESULTS

Five LiDAR-derived variables and distance-to-coast were
selected in our final model (Table 2; Fig. 2). This model will
henceforth be referred to as the LiDAR model. Maximum
percentage of all returns above the mean height (ALLC-
VABVMN_ max), maximum of height distribution of 99th
(EL_p99_max) and 10th percentile of first returns (EL_p10_-
max), and standard deviation of percentage of first returns
above the modal height (FRSTCVABVMD_std) tended to
be larger in occupied stands (Fig. 3). Minimum kurtosis of
height distribution (EL_kurt_min) was smaller in occupied
stands than in unoccupied stands. Occupied stands tended to
be slightly closer to the coast.

The LiDAR model had an AUC value of 0.74 (which
corresponds to acceptable discrimination) and a k value of
0.24 (which corresponds to fair agreement between observed
and predicted occupancy). Overall accuracy, sensitivity,
and specificity based on the confusion matrix (Table 3)
equaled 64, 63, and 65, respectively. The LiDAR model
predicted more unoccupied stands as occupied (Fig. 4A gray)
than occupied stands as unoccupied (Fig. 4A white).
In spite of significant interactions of FRSTCVABVMD_std

with both EL_p99_max and EL_p10_max, improvement of a
model including interaction terms over the simple LiDAR
model was marginal (AUC¼ 0.74, overall accuracy¼ 65,
sensitivity¼ 66, specificity¼ 65, k¼ 0.26). Hence, we pre-
ferred the simpler LiDAR model without interactions.
Three Gradient Nearest Neighbor variables (SLO-

PE_PCT, PCTMATURE_50, and CANCOV_CON)
were significant in the Gradient Nearest Neighbor model
(Table 4). Predicted probabilities for the Gradient Nearest

Table 2. Variable descriptions and coefficients, with standard errors and significance levels, for a model of marbled murrelet occupancy developed with
LiDAR-derived variables for the Coos Bay Bureau of Land Management District, Oregon, USA. LiDAR data were collected between 3 May and 28
September 2008, and metrics were produced using FUSION software (McGaughey 2009) at a pixel size of 22.9m.

Coeff. Variable description and ecological interpretation Estimated coeff. SE Signif. levelsa

Intercept �15.416 3.609 ���

ALLCVABVMN_max LiDAR canopy-cover metric: percentage of all returns above mean canopy ht
(stand max.). Interpretation: cover in upper portion of canopy.

0.078 0.037 �

EL_p99_max LiDAR canopy ht distribution: 99th percentile of first returns (stand max.).
Interpretation: max. ht of tallest trees.

0.048 0.016 ��

EL_p10_max Canopy ht distribution: 10th percentile of first returns (stand max.).
Interpretation: max. ht of bottom of canopy.

0.068 0.024 ��

FRSTCVABVMD_std LiDAR canopy-cover metric: percentage of first returns above the modal ht
(SD). Interpretation: variation in cover in upper canopy.

0.142 0.065 �

EL_kurt_min Canopy ht distribution: kurtosis of ht distribution (standmin.). Interpretation:
distribution of vegetation across canopy ht intervals.

1.940 0.976 �

Distance-to-coast (km) Distance to the Pacific Ocean from stand center (source: National Hydrography
Dataset)

�0.059 0.012 ���

�0.01<P� 0.05; ��0.001<P� 0.01; ���0<P� 0.001.

Figure 2. Comparison of structural profiles derived from 2008 LiDAR data of example forest stands in the Coos Bay BLM District, Oregon, USA,
representing 3 marbled murrelet occupancy classes. The table below the diagram lists the variables selected for a model of marbled murrelet occupancy and the
variable values associated with each occupancy class. ELp99_max and EL_p10_max reflect height at the top and bottom of the canopy, respectively;
EL_kurt_min describes kurtosis of canopy height distribution; ALLCVABVMN_max and FRSTCVABVMD_std reflect cover in the upper canopy. See
Table 2 for detailed variable descriptions.
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Neighbor model ranged from 0.06 to 0.71 for unoccupied
stands and from 0.11 to 0.54 for occupied stands (Fig. 4B).
For all explanatory variables in the LiDAR model except

distance-to-coast, the same trends between occupied and

unoccupied stands were observed for the Elliott State Forest
as for the Coos Bay District. The surveyed stands in the
Elliott State Forest tended to be slightly closer to the coast
than those in the Coos Bay district (Fig. 3), but distance to

Figure 3. Distribution of values of explanatory variables selected in a logistic regression model of marbled murrelet occupancy for occupied (1) and unoccupied
(0) stands. The model was developed using murrelet occupancy data collected between 1993 and 2010 and LiDAR data collected data collected between 3May
and 28 September 2008 on the Coos Bay BLM District, and tested using murrelet occupancy data collected between 1992 and 2012 from the Elliott State
Forest, southwestern Oregon, USA.
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coast did not differ between occupied and unoccupied stands.
Occupied stands in the Coos Bay District tended to have
larger values for variables related to tree height and cover
(ALLCVABVMN_max, EL_p99_max, EL_p10_max, and
FRSTCVABVMD_std), and smaller values for the variable
related to kurtosis of canopy height distribution (EL_kurt_-
min). The ranges of the LiDAR variables for Elliott State
Forest occupied stands were similar to those observed for the
Coos Bay District. However, the LiDAR variables for
unoccupied sites in the Elliott State Forest tended to have a
larger range of values than those observed for unoccupied
sites in the Coos Bay district (Fig. 3).
When applied to the independent data set of the Elliott

State Forest, the LiDAR model resulted in a Cohen’s k of
0.18, thus showing poor agreement between predicted and
observed occupancy for the Elliott State Forest. Based on the
confusion matrix, the LiDAR model had an overall accuracy
of 51 and sensitivity and specificity values of 91 and 41,
respectively (Table 5; Fig. 5A). The Gradient Nearest
Neighbor model, which already resulted in poor agreement
for the Coos Bay data, performed even worse when applied to
the Elliott State Forest data, with Cohen’s k of 0.04. The
Gradient Nearest Neighbor model predicted the majority of
unoccupied stands to be occupied, resulting in low overall
accuracy (31), with high sensitivity values (94) and low
specificity values (15 [Table 5; Fig. 5B]).

Analysis of Nest Tree Data
Two variables related to tree height and cover (EL_p99_max
and ALL1CVABVMD_mean) were significantly larger for
nest trees than for random points for 500 and 499 of the 500
data sets, respectively (Fig. 6; example of one of the 500 data
sets). EL_p99_max represents maximum canopy height;
ALL1CVABVMD is the ratio of all returns above modal
canopy height to the total number of LiDAR pulses (i.e., a
measure of cover in the upper canopy). These 2 variables
entered the final model in the majority of the data sets when
the variable selection process was performed. Although
distance to stand edge tended to be larger for nest trees than
for random points (Fig. 6), the difference was not significant
and it did not enter into the logistic regression model. On
average across the 500 data sets, EL_p99_max and
ALL1CVABVMD_mean achieved outstanding discrimina-
tion between nest sites and random points (average
AUC¼ 0.91). Area-under-curve values ranged from 0.82
to 0.98, thus achieving at least excellent discrimination for all
500 data sets.
With ALL1CVABVMD_mean held constant, a 10-unit

increase in EL_p99_max increased the odds of a point being
a nest tree 2 times, on average, across the 500 data sets,
ranging between 1.1 and 3.8. The lower and upper 95%
confidence limits of the odds ratios, on average, across the
500 data sets were 1.4 and 6.2, respectively. A 10-unit

Table 3. Comparison of results of leave-one-out cross-validation for models of marbled murrelet occupancy between 1993 and 2010 on the Bureau of Land
Management Coos Bay District (OR, USA). The LiDAR model uses variables derived from data collected in 2008; the GNNModel uses variables identified
by Raphael et al. (2011) as relevant to murrelet occupancy and derived from the 2006 Gradient Nearest Neighbor imputation model (Moeur et al. 2011).

Status

Predicted

ObservedLiDAR model GNN model

Occupied Unoccupied Occupied Unoccupied Total

Occupied 76 45 68 53 121
Unoccupied 107 195 130 172 302

Figure 4. Distribution of predicted marbled murrelet occupancy probabilities in the Coos Bay BLMDistrict, southwestern Oregon, USA, from (A) variables
derived from LiDAR data collected between 3 May and 28 September 2008 and (B) variables derived from the 2006 Gradient Nearest Neighbor imputation
model (GNN; Moeur et al. 2011) for unoccupied (dark gray) and occupied stands (white). Overlap in distributions shown in light gray. The vertical line
represents the cut-off value (¼0.286) used to determine occupancy.
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Table 4. Model coefficients with standard errors, significance levels, and variance inflation factors (VIF) for a model of marbled murrelet occupancy between
1993 and 2010 on the Coos Bay, Oregon Bureau of Land Management District (OR, USA) using variables identified by Raphael et al. (2011) as relevant to
murrelet occupancy and derived from the 2006 Gradient Nearest Neighbor imputation model (Moeur et al. 2011).

Model coeff. Estimated coeff. SE Significance levelsa VIF

Intercept �0.159 0.826
SLOPE_PCT 0.021 0.009 � 1.02
PCTMATURE_50 0.016 0.006 �� 1.59
CANCOV_CON �0.038 0.015 � 1.59

�0.01<P� 0.05; ��0.001<P� 0.01.

Table 5. Classification of occupancy by marbled murrelets between 1993 and 2010 for the Elliott State Forest, Oregon, USA, based on a model using
LiDAR-derived independent variables and a model using variables identified by Raphael et al. (2011) as relevant to murrelet occupancy and derived from the
2006 Gradient Nearest Neighbor imputation model (Moeur et al. 2011).

Status

Predicted

ObservedLiDAR model GNN model

Occupied Unoccupied Occupied Unoccupied Total

Occupied 118 12 121 8 130
Unoccupied 299 211 431 79 510

Figure 5. Distribution of predicted marbled murrelet occupancy probabilities in the Elliott State Forest, southwestern Oregon, USA, from (A) variables
derived from LiDAR data collected between 3 May and 28 September 2008 data and (B) variables derived from the 2006 Gradient Nearest Neighbor
imputation model (GNN;Moeur et al. 2011) for unoccupied (dark gray) and occupied stands (white). Overlap in distributions shown in light gray. The vertical
line represents the cut-off value (¼0.203) used to determine occupancy.

Figure 6. Distributions of explanatory variables characterizingmarbledmurrelet nest trees (Nest tree¼ 1) and random points (Nest tree¼ 0) in the Elliott State
Forest, southwestern Oregon, USA, for an example data set resulting from one of 500 iterations of random point selection. EL_p99_max and
ALL1CVABVMD_mean are derived from 2008 LiDAR data and represent maximum canopy height (99th percentile of first returns) and the ratio of all
returns above modal canopy height to the total number of LiDAR pulses (i.e., a measure of cover in the upper canopy), respectively.
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increase in ALL1CVABVMD_mean for fixed values of
EL_p99_max increased the odds of a point being a nest tree
2.1 times on average, ranging from 1.26 to 16.41. Lower and
upper 95% confidence limits averaged 1.1 and 5.0,
respectively.

DISCUSSION

Our results illustrate how LiDAR-derived variables can be
used to improve model prediction accuracy for murrelet
habitat at local spatial scales over models using variables
derived from traditional remote sensing data (GNN and
LandTrendr). Whereas the model using GNN and GNN-
derived variables developed by Raphael et al. (2011) is useful
for estimating region-wide availability of suitable habitat for
murrelets (Raphael et al. 2011:29), our model based on
LiDAR-derived variables provides a refined estimate of the
availability of murrelet nesting habitat, useful for discrimi-
nating among mature forest stands on smaller, sub-regional
spatial scales (Fig. 7). Because the LiDAR model out-
performed the Gradient Nearest Neighbor model in every
aspect of model evaluation that we used, we conclude that the
LiDAR explanatory variables, in combination with distance-
to-coast, have more explanatory power than the available
Gradient Nearest Neighbor and Gradient Nearest Neigh-
bor–derived variables for modeling habitat at stand to
watershed spatial scales. Our work shows that incorporating
LiDAR-derived variables into models can more accurately
represent murrelet nesting habitat. Models incorporating
LiDAR-derived variables may provide more refined esti-
mates of the availability of murrelet nesting habitat at local
spatial scales (Fig. 7) than do models that are based on

Gradient Nearest Neighbor andGradient Nearest Neighbor–
derived variables for 2 main reasons. First, whereas Gradient
Nearest Neighbor data are limited to 2-dimensional habitat
features, LiDAR variables provide empirical, 3-dimensional
measurements of forest structure (Lefsky et al. 1999, 2002)
that can be directly related to functional habitat use
(Palminteri et al. 2012). Furthermore, the ability of LiDAR
to provide continuous, rather than categorical, metrics
describing vegetation structure allows for more realistic
representation of the ecological gradients that influence
species’ distributions (McGarigal and Cushman 2005). In
the case of the murrelet, a species that is highly influenced
by canopy structure, LiDAR variables are likely to have
better discriminatory power than 2-dimensional, categorical
Gradient Nearest Neighbor variables because of their ability
to quantify 3-dimensional gradients in canopy complexity
with continuous metrics.
Secondly, Raphael et al. (2011) developed their Maxent

model using presence-only and background data. Their
model provided excellent predictive power at a broad regional
scale because the background data represented a full range of
stand age classes, including stands that were too young to be
considered potential murrelet nesting habitat. However, the
contribution of variables to models of species distribution has
been shown to change with the size of the area from which
pseudo-absence points are drawn (VanDerWal et al. 2009).
The variables in the Raphael et al. (2011) model were
selected to discriminate among the broader range of
variability represented across the region, whereas the
LiDAR-derived variables selected from our spatially con-
strained data used forest structural attributes to discriminate
among stands that were relatively similar in age.
The reduction in model performance that we observed

when applying the LiDAR model to the Elliott State Forest
was expected because of differences between Elliott State
Forest and the Coos Bay District in 1) the ranges of some
explanatory variables (the Elliott State Forest included
younger stands than Coos Bay), and 2) the degree of
difference between unoccupied and occupied stands for some
explanatory variables (Fig. 3). Although, the LiDAR model
performance decreased when applied to the independent data
set of the Elliott State Forest, it still outperformed the
Gradient Nearest Neighbor model, which performed very
poorly for the Elliott Forest in terms of overall accuracy,
specificity, and Cohen’s k. The improved performance of the
LiDAR model over the Gradient Nearest Neighbor model
when applied to the independent Elliott State Forest data
provides evidence that, at stand to watershed spatial scales,
LiDAR variables have greater explanatory power than do
Gradient Nearest Neighbor–derived variables.
The LiDAR-derived variables selected in our model

described dimensions of canopy structure that reflect age-
related stand characteristics and are consistent with murrelet
nesting ecology. The ability of LiDAR to discriminate
among age and structure classes of forest stands has
previously been demonstrated (e.g., Lefsky et al. 1999,
Falkowski et al. 2009). Large values of the maximum height
of the canopy (EL_p99_max) combined with high values of
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Figure 7. Example output of probability of occupancy by marbled murrelets
in the Coos Bay BLMDistrict, Oregon, USA, from a model using LiDAR-
derived variables to quantify habitat suitability at a local spatial scale. Gray
areas are private lands that were not modeled. Marbled murrelet survey data
were used to develop model were collected between 1993 and 2010; LiDAR
data collected in 2008.
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cover in the upper portion of the canopy (ALLC-
VABVMN_max, ALL1CVABVMD_mean), which we
found to be positively associated with murrelet occupancy
and nest site locations, indicate large tree crowns that have
developed with age (Parker and Russ 2004). Kurtosis of
height distribution, a LiDAR-derived variable describing
vertical stratification of canopy vegetation, also indicates
differences among forest age and structure classes. Jones et al.
(2012) found that variables describing kurtosis and standard
deviation of height were significant in differentiating
between young and mature forests in heavily managed
coastal forests in British Columbia. Lower values of kurtosis
for height distribution were indicative of structurally
complex, multilayered canopies in natural stands, whereas
elevated kurtosis values indicated structurally simple cano-
pies in riparian hardwood forest types (Antonarakis
et al. 2008). Our finding that stands occupied by murrelets
had lower minimum kurtosis values than unoccupied stands
indicates greater vertical stratification of canopies in occupied
stands, and is consistent with the established association of
murrelets with multi-storied canopies (e.g., Hamer and
Nelson 1995, Nelson andWilson 2002, Raphael et al. 2011).
The LiDAR-derived kurtosis metric provides a directly
measured index of canopy layering as an alternative to a
variable (no. of canopy layers) that had previously been
defined categorically and estimated subjectively.
The selection of EL_p10 max in the occupancy model was

unexpected because this variable reflects the height of the
bottom of the canopy, which is not typically used for nesting.
Although this variable may be an indicator of flight space,
murrelets do not necessarily fly below the level of the live
crown to access their nests. Alternatively, maximum values of
EL_p10 likely indicate tall trees with high live crowns, which
is characteristic of nest trees that occur in older-aged forests.
Murrelets have extremely fast flight, and typically make use

of openings in the canopy near or adjacent to nests as a means
for stalled landings on, and taking off from the nest limb
(Nelson and Peck 1995, Singer et al. 1995). The higher
scores of FRSTCVABVMD_std, with which probability of
murrelet occupancy was positively associated, indicate
potential selection for high variability of cover (i.e.,
gappiness) in the upper canopy (above modal ht). This
variable may be useful as an indicator of gaps among
overstory trees in late-seral forest that form 3-dimensional
corridors that could be used as flight routes through the
forest by murrelets (Singer et al. 1995). In addition, it could
indicate remnant old-growth trees that might provide
suitable nesting habitat in patches of younger forest. Direct
quantification of the dimensions of canopy gaps on a spatial
scale relevant to murrelets has not previously been feasible
using other remote-sensing or field methods. LiDAR data
have been used to derive metrics describing the horizontal
and vertical properties of gaps, including gap connectivity
(Koukoulas and Blackburn 2004). Such metrics were not
among the FUSION metrics available for our analysis, but
may be useful for identifying flight paths used by murrelets.
Evaluated in total, the variables identified by our model as
important correlates of occupancy describe ecologically

meaningful, 3-dimensional features of canopy structure
that have not been easily or accurately quantified by other
mensuration methods.
None of the variables that entered our model allowed

perfect discrimination of occupied and unoccupied stands
(Fig. 3). However, it is important to consider that all stands
in our sample were considered potential habitat when
evaluating the performance of the model. The difficulty of
discriminating between occupied and unoccupied stands is
reflected in the distribution of the predicted probabilities of
occupancy (Fig. 4). The resulting inflated rate of error of
commission (assigning high probability of occupancy to
unoccupied stands) can be attributed to the fact that the
population used to develop the model was limited to stands
that were all considered to be potential murrelet nesting
habitat based on age (mostly >80 yr old) and structural
characteristics such as the presence of residual trees (K.
Palermo, Bureau of Land Management, personal communi-
cation). The estimates of occupancy are conservative because
they erred on the side of predicting unoccupied stands as
occupied (false positives). For models that are used to assess
habitat for threatened or endangered species, erring
conservatively on the side of false positives as ours did is
in most cases more acceptable than false negatives (Morrison
et al. 2006). Furthermore, inter-annual variability in
occupancy status of suitable stands by murrelets can occur
for many reasons, including mortality of territorial birds and
changes in off-shore foraging conditions (Evans Mack
et al. 2003, Peery et al. 2004), providing ecological
justification for the bias of our model toward false positive
prediction errors (Fielding and Bell 1997).
In spite of the difficulty in discriminating among occupancy

classes related to a limited range of variation in stand
characteristics (Aberg et al. 2000), our model nonetheless
was able to differentiate habitat based on fine-scale structural
attributes. These results indicate that the detailed descrip-
tions of habitat features at relevant spatial scales available
through LiDAR may provide superior discriminatory power
among habitats that may appear similar from a human
perspective (Tattoni et al. 2012). By providing new ways to
quantify three-dimensional forest structure, LiDAR expands
the lexicon that can be used to describe and understand the
physical features that influence habitat selection and use,
thereby increasing our capacity to understand habitat
relationships. In this case, variables representing maxima
in tree height and cover provided insight into the fine scale
structural attributes that characterized stands occupied by
murrelets. These variables highlight the importance of
individual, old-growth components that are most likely to
provide nesting platforms in mature and late-seral forest
stands (Nelson 1997, Baker et al. 2006).

MANAGEMENT IMPLICATIONS

Our model of murrelet occupancy directly addresses needs
identified in the Recovery Plan for refined measures of nest
site structure and selection by murrelets. It provides a tool to
improve estimates of nesting habitat availability specifically
on Coos Bay BLM lands. Because LiDAR metrics are
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obtainable and repeatable over large areas, our model can be
used to monitor fine-scale changes in murrelet habitat
availability in the Coos Bay BLM District over time. As no
model should be used to extrapolate beyond the data used in
its construction, we do not recommend application of our
model beyond the Coos Bay BLM District without
additional development and testing. However, our work
demonstrates the advantages of using LiDAR over other
remote sensing data for estimating habitat availability at local
spatial scales.
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